
## MA3025 Exam # 2

Due 9am/11am November 15th, 2007 Name \_\_\_\_\_

Instructor: Dr. Ralucca Gera

Show all necessary work in each problem to receive credit. Please turn in well-organized work and complete solutions. You may ONLY use your notes and Rosen book (no collaboration is allowed either). The maximum score for the exam is 100.

- 1. (10 points) True or false (no need to justify):
  - (a) Every  $2 \times 2$  matrix with a nonzero determinant has an inverse.
  - (b) The recurrence  $a_n = 2a_{n-1} + \sqrt{2}a_{n-2} + \pi a_{n-3}$  with  $a_0 = 0$ ,  $a_1 = 2$  and  $a_2 = 3$  is a linear homogeneous recurrence with constant coefficients of degree 3.
  - (c) The equation  $a_n = (n-1)!, n \ge 1$  is a solution to the recurrence  $a_n = n \cdot a_{n-1}, n \ge 2$  with  $a_1 = 1$ .
  - (d) Is the relation given by the following matrix symmetric?  $\begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$ .
  - (e) Is the relation given by the following digraph transitive?



**2.** (15 points) Recall that the Fibonacci sequence  $F_n$  is defined by  $F_0 = 0$ ,  $F_1 = 1$ , and  $F_n = F_{n-1} + F_{n-2}$  for  $n \ge 2$ . The Lucas sequence  $L_n$  is similarly defined, by  $L_0 = 2$ ,  $L_1 = 1$ , and  $L_n = L_{n-1} + L_{n-2}$  for  $n \ge 2$ . (The two sequences use the same recurrence, but with different initial conditions.) Prove that, for all  $n \ge 2$  we have that  $5F_{n+2} = L_{n+4} - L_n$ .

**3.** (15 points) Let  $L_n$  be defined by  $L_0 = 2, L_1 = 1$ , and  $L_n = L_{n-1} + L_{n-2}$  for  $n \ge 2$ . Prove that for nonnegative integers n we have that  $\sum_{i=0}^{n} L_i = L_{n+2} - 1$ .

**4.** (10 points) Solve  $a_n = \frac{a_{n-2}}{9}$  for  $n \ge 2$  with  $a_0 = 0$  and  $a_1 = 1$ 

**5.** (10 points) Find a recurrence for the relation  $a_n = (-1)^n n!$  for  $n \ge 0$ . Simplify as much as possible.

| 6.                    | (10 points)                                                                                                                                                                                          |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a)                   | Find the number of terms in the formula for the number of elements in the union of 4 sets given by the principle of inclusion-exclusion. Some terms may be zero, and you should count them as well.  |
|                       |                                                                                                                                                                                                      |
|                       |                                                                                                                                                                                                      |
|                       |                                                                                                                                                                                                      |
|                       |                                                                                                                                                                                                      |
| (b)                   | How many bit strings of length 14 do not contain 12 consecutive 1s?                                                                                                                                  |
|                       |                                                                                                                                                                                                      |
|                       |                                                                                                                                                                                                      |
| 2 extra credit points | Find the number of terms in the formula for the number of elements in the union of 40 sets given by the principle of inclusion-exclusion. Some terms may be zero, and you should count them as well. |
|                       |                                                                                                                                                                                                      |

- 7. (10 points) Let  $A = \{-1, 0, 1, 2, 3, 4\}$  and  $R = \{(-1, 2), (-1, 3), (0, 0), (1, 1), (2, 3)\}.$ 
  - (a) Find  $R^2$  and  $R^3$

- (b) is the element (1,3) in  $R^{2007}$ ?
- (c) list each of  $R, R^2$  and  $R^3$  with a matrix

(d) draw the directed graphs that represent  $R, R^2$  and  $R^3$ .

| by ( | (20 points) let $A$ be the set of all binary strings of length 100. Define a relation $R$ on $A$ $(x,y) \in R$ if the binary strings $x$ and $y$ agree in the first and the last bit. Answer with anations if $R$ : |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a)  | reflexive?                                                                                                                                                                                                          |
|      |                                                                                                                                                                                                                     |
|      |                                                                                                                                                                                                                     |
| (b)  | irreflexive?                                                                                                                                                                                                        |
|      |                                                                                                                                                                                                                     |
| (c)  | symmetric?                                                                                                                                                                                                          |
| (0)  |                                                                                                                                                                                                                     |
|      |                                                                                                                                                                                                                     |
| (d)  | antisymmetric?                                                                                                                                                                                                      |
|      |                                                                                                                                                                                                                     |
|      |                                                                                                                                                                                                                     |
| (e)  | transitive?                                                                                                                                                                                                         |
|      |                                                                                                                                                                                                                     |

| Find the equivalence classes if they exist.                                                                   |
|---------------------------------------------------------------------------------------------------------------|
|                                                                                                               |
| How many elements are there in each of the equivalence classes above?                                         |
| Do the classes form a partition? If so, what are they a partition of? If not, what set should they partition? |
|                                                                                                               |
| How many elements are there in the relation $R$ above?                                                        |
|                                                                                                               |
|                                                                                                               |
|                                                                                                               |

|          | TRA CREDIT: ion property: | 5 points)   | Let   | R be a    | relation  | defined | on t | he set | of | integers | by | the |
|----------|---------------------------|-------------|-------|-----------|-----------|---------|------|--------|----|----------|----|-----|
| arvio    | ion property.             |             |       | $R = \{($ | (a,b):a b | }       |      |        |    |          |    |     |
| Is $R$ : |                           |             |       |           |           |         |      |        |    |          |    |     |
| (a)      | reflexive?                |             |       |           |           |         |      |        |    |          |    |     |
|          |                           |             |       |           |           |         |      |        |    |          |    |     |
|          |                           |             |       |           |           |         |      |        |    |          |    |     |
| (b)      | symmetric?                |             |       |           |           |         |      |        |    |          |    |     |
| (8)      | symmotric.                |             |       |           |           |         |      |        |    |          |    |     |
|          |                           |             |       |           |           |         |      |        |    |          |    |     |
|          |                           |             |       |           |           |         |      |        |    |          |    |     |
| (c)      | antisymmetric?            |             |       |           |           |         |      |        |    |          |    |     |
|          |                           |             |       |           |           |         |      |        |    |          |    |     |
|          |                           |             |       |           |           |         |      |        |    |          |    |     |
| (d)      | transitive?               |             |       |           |           |         |      |        |    |          |    |     |
|          |                           |             |       |           |           |         |      |        |    |          |    |     |
|          |                           |             |       |           |           |         |      |        |    |          |    |     |
| (e)      | Find the equival          | lence class | es if | they exi  | st.       |         |      |        |    |          |    |     |